VEDIC MATHS-94


VEDIC MATHS

                           By OMKAR TENDOLKAR

Hello friends,

                      This is  post number 94 from the series of "Vedic maths" blogs. Here in this blog we will learn about "Quadratic Equations-I"

Quadratic Equations:
Here in this post we will learn how to solve quadratic equations using Vedic maths.
Quadratic equations are of the form:
 a(x)^2 + bx + c = 0
Quadratic means ‘two’. So here the unknown variable x will have two values.
Here we have the formula for solving the quadratic equation as:
(-b±√(b²-4ac))/(2a) .

Examples :
1. Here we have our first sum: 7(x)^2 - 5x - 2 = 0

Here a = 7, b = -5 and c = -2.
So we apply the formula (-b±√(b²-4ac))/(2a) 
Here, the differential is the square root of the discriminant.
So we’ll get  ______________
14x - 5 = ± √ 25 - ( 4 × 7 × -2)
14x - 5 = ± (81)^1/2
14x - 5 = ± 9

x =   (9 +5) / 14 = 1.
x = (-9 + 5) / 14 = 2/7.
Answer:
x = 1 & x = 2/7.

2. Here we have our first sum: 6(x)^2 + 5x - 3 = 0

Here a = 6, b = 5 and c = -3.
So we apply the formula (-b±√(b²-4ac))/(2a) 
Here, the differential is the square root of the discriminant.
So we’ll get 
                     ______________
12x + 5 = ± √ 25 - ( 4 × 6 × -3)
12x + 5 = ± (97)^1/2
12x + 5 = ± (97)
x = [-5 ± (97)] / 12.
Now, x = [-5 + √(97)]/12, x = [-5 - √(97)]/12

Answer:
x = [-5 + √(97)]/12 & x = [-5 - √(97)]/12

3. Here we have our first sum: 2(x)^2 - 5x + 2 = 0

Here a = 2, b =-5 and c = -2.
So we apply the formula (-b±√(b²-4ac))/(2a) 
Here, the differential is the square root of the discriminant.
So we’ll get 
                  ______________
4x - 5 = ± √ 25 - ( 4 × 2 × 2)
4x - 5 = ± (9)
4x - 5 = ± 3
x = [ 5 + 3 / 4 = 8/4 = 2.
x = [ 5 - 3 / 4  = 2/4 = 1/2.

Answer:
x = 2 & x = 1/2

The simplicity of this method can be vouched from examples given above.

You may try following examples.
1. 2(x)^2 -  3x +  5 = 0
2.   (3)^2 + 4x +  3 = 0.
3. (2x)^2 + 3x - 20 = 0.

In next blog we will discuss about "Quadratic Equation-II".     

Are you excited for this?...
Then, please wait for it.
I will post my new blog in next week.

We will meet very soon through our next  blog. Till that stay connected, stay healthy and stay safe.

Thanks

for giving your valuable time.

Good day😊

Comments

Post a Comment

Popular posts from this blog

VEDIC MATHEMATICS

VEDIC MATHS-1

VEDIC MATHS-15